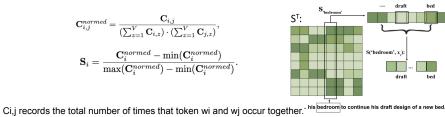
salesforce

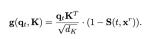
Learning from Mistakes: Using Mis-predictions as Harm Alerts

in Language Pre-Training

Chen Xing, Wenhao Liu and Caiming Xiong Salesforce Research, Palo Alto, USA


Motivation

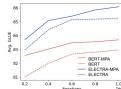
He went back to his $\underline{bedroom}$ to continue his draft design of a new bed.


- The ground-truth word is ``study", which is mis-predicted as ``bedroom". It is probably because the frequently co-occurring pattern between "bedroom" and "bed" that is easy to fit for the model, dominates pre-training and outruns the hard-to-fit semantics in the context.
- We believe that mis-predictions can help locate such dominating patterns the model has fitted that harm language understanding. When a mis-prediction occurs, there are likely to be some dominating patterns related to the mis-prediction in the context fitted by the model that cause this mis-prediction, for example, the frequently co-occurring word "bed" with the mis-prediction "bedroom".
- If we can add regularization to train the model to rely less on these dominating patterns such as word co-occurrences when a mis-prediction occurs, thus focusing more on the rest more subtle patterns, more information can be efficiently fitted at pre-training.

Method:Using Mis-predictions as Harm Alerts (MPA)

Building a context matrix S with word co-occurrence information

Pre-Training in MPA


$$\mathcal{L}_A = rac{1}{N_M}\sum_{t=0}^{N_M} (rac{\mathbf{q}_t \mathbf{K}^T}{\sqrt{d}} - \mathbf{g}(\mathbf{q}_t, \mathbf{K}))^2$$

$$\mathcal{L}(\mathbf{x}, \mathbf{x}^m, \mathbf{x}^r) = \mathcal{L}_G(\mathbf{x}, \mathbf{x}^m) + \lambda \mathcal{L}_D(\mathbf{x}, \mathbf{x}^r) + \gamma \mathcal{L}_A(\mathbf{x}, \mathbf{x}^r)$$

We multiply the original pre-softmax attention co-efficients with $(1-S(t,x^{n}r))$. Through this way, keys ignored by the attention module could be set a larger weight if their context coefficients in $S(t,x^{n}r)$ are smaller compared with other tokens in the sentence.

Similarly, keys at positions of frequent context of the mis-prediction would X_r be set smaller weights.

Experiment Results

	Params	Avg. GLUE	Avg. SuperGLUE	SQuAD2.0 F1	SQuAD2.0 E
GPT-2	117 M	78.8	-	-	-
BERT	110 M	82.2	66.1	76.4	79.6
SpanBERT	110 M	83.9	-	77.1	80.3
ELECTRA	110 M	85.1	-	80.5	83.3
BERT (Ours)	110 M	83.0	66.3	76.9	80.1
BERT-MPA	110 M	83.7	67.4	77.5	80.7
ELECTRA (Ours)	110 M	85.2	70.1	80.2	83.1
ELECTRA-MPA	110 M	86.0	72.2	83.1	86.1

L-2 Loss

Key

... his bedroom to continue his draft design of a new bed.

1-S('bedroom', x):

draft

g('bedroom', x): draft

draft

Self-Attention Module

	MNLI	QNLI	QQP	SST	CoLA	MRPC	RTE	STS
BERT (Ours)	$84.9 {\pm} 0.09$	91.3 ±0.17	$91.0 {\pm} 0.07$	$92.9 {\pm} 0.15$	55.2 ± 0.63	88.3±0.94	68.6 ± 0.74	89.4±0.42
BERT-MPA	84.9 ±0.11	90.9±0.27	91.1 ±0.16	93.4 ±0.09	61.2 ±0.51	89.7 ±0.88	70.6 ±0.81	87.8±0.59
ELECTRA(Ours)	86.9±0.07	92.5±0.11	91.6±0.17	93.0±0.08	67.6±0.28	90.3±0.59	70.1±0.98	90.0±0.36
ELECTRA-MPA	87.1±0.13	92.8 ±0.35	91.7 ±0.19	93.8 ±0.07	67.4 ± 0.24	91.8 ±0.41	73.2±0.56	90.2±0.29

a('bedroom', x):

Query