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Motivation

He went back to his bedroom to continue his draft design of a new bed.

e The ground-truth word is ““study", which is mis-predicted as ““bedroom". It is probably
because the frequently co-occurring pattern between "bedroom" and "bed" that is easy
to fit for the model, dominates pre-training and outruns the hard-to-fit semantics in
the context.

e We believe that mis-predictions can help locate such dominating patterns the model
has fitted that harm language understanding. When a mis-prediction occurs, there are
likely to be some dominating patterns related to the mis-prediction in the context
fitted by the model that cause this mis-prediction, for example, the frequently co-occurring
word "bed" with the mis-prediction "bedroom".

e If we can add regularization to train the model to rely less on these dominating
patterns such as word co-occurrences when a mis-prediction occurs, thus focusing
more on the rest more subtle patterns, more information can be efficiently fitted at
pre-training.

e Pre-Training in MPA
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‘We multiply the original pre-softmax attention co-efficients with (1-S(t,x"r)).
Through this way, keys ignored by the attention module could be set a
larger weight if their context coefficients in S(t, x*r) are smaller compared
with other tokens in the sentence.

Similarly, keys at positions of frequent context of the mis-prediction would
be set smaller weights.
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Method:Using Mis-predictions as Harm Alerts (MPA)

Experiment Results
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